Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(5): 425, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573498

RESUMO

The remediation of polluted soil and water stands as a paramount task in safeguarding environmental sustainability and ensuring a dependable water source. Biochar, celebrated for its capacity to enhance soil quality, stimulate plant growth, and adsorb a wide spectrum of contaminants, including organic and inorganic pollutants, within constructed wetlands, emerges as a promising solution. This review article is dedicated to examining the effects of biochar amendments on the efficiency of wastewater purification within constructed wetlands. This comprehensive review entails an extensive investigation of biochar's feedstock selection, production processes, characterization methods, and its application within constructed wetlands. It also encompasses an exploration of the design criteria necessary for the integration of biochar into constructed wetland systems. Moreover, a comprehensive analysis of recent research findings pertains to the role of biochar-based wetlands in the removal of both organic and inorganic pollutants. The principal objectives of this review are to provide novel and thorough perspectives on the conceptualization and implementation of biochar-based constructed wetlands for the treatment of organic and inorganic pollutants. Additionally, it seeks to identify potential directions for future research and application while addressing prevailing gaps in knowledge and limitations. Furthermore, the study delves into the potential limitations and risks associated with employing biochar in environmental remediation. Nevertheless, it is crucial to highlight that there is a significant paucity of data regarding the influence of biochar on the efficiency of wastewater treatment in constructed wetlands, with particular regard to its impact on the removal of both organic and inorganic pollutants.


Assuntos
Carvão Vegetal , Poluentes Ambientais , Áreas Alagadas , Monitoramento Ambiental , Biodegradação Ambiental , Solo , Água
2.
Environ Pollut ; 349: 123922, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38580064

RESUMO

Water scarcity has become a critical global concern exacerbated by population growth, globalization, and industrial expansion, resulting in the production of wastewater containing a wide array of contaminants. Tackling this challenge necessitates the adoption of innovative materials and technologies for effective wastewater treatment. This review article provides a comprehensive exploration of the preparation, applications, mechanisms, and economic environmental analysis of zeolite-based composites in wastewater treatment. Zeolite, renowned for its versatility and porous nature, is of paramount importance due to its exceptional properties, including high surface area, ion exchange capability, and adsorption capacity. Various synthetic methods for zeolite-based composites are discussed. The utilization of zeolites in wastewater treatment, particularly in adsorption and photocatalysis, is thoroughly investigated. The significance of zeolite in adsorption and its role in the photocatalytic degradation of pollutants are examined, along with its applications in treating volatile organic compounds (VOCs), dye wastewater, oil-field wastewater, and radioactive waste. Mechanisms underlying zeolite-based adsorption and photocatalysis, including physical and chemical adsorption, ion exchange, and surface modification, are elucidated. Additionally, the role of micropores in the adsorption process is explored. Furthermore, the review delves into regeneration and desorption studies of zeolite-based composites, crucial for sustainable wastewater treatment practices. Economic and environmental analyses are conducted to assess the feasibility and sustainability of employing zeolite-based composites in wastewater treatment applications. Future recommendations are provided to guide further research and development in the field of zeolite-based composites, aiming to enhance wastewater treatment efficiency and environmental sustainability. By exploring the latest advancements and insights into zeolite-based nanocomposites, this paper aims to contribute to the development of more efficient and sustainable wastewater treatment strategies. The integration of zeolite-based materials in wastewater treatment processes shows promise for mitigating water pollution and addressing water scarcity challenges, ultimately contributing to environmental preservation and public health protection.

3.
Mol Biol Rep ; 50(11): 8799-8808, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37658932

RESUMO

BACKGROUND: Seeds of super basmati were mutagenized with different ethyl methane sulphonate (EMS) doses for creating genetic variability. METHODS AND RESULTS: A total of 48 randomly selected putative EMS mutants of super basmati were analyzed to dissect the genetic diversity by using 25 SSR primers located on twelve chromosomes of rice. SSRs analysis revealed that wide-range of genetic diversity is present among mutants of super basmati. A sum of 91 alleles were identified, out of these, 82 alleles were polymorphic and the rest of nine alleles were monomorphic in nature. The range of allele number was 2-10 with mean of 3.64 alleles/locus. The value of polymorphic information content was range between 0.039 (RM5) and 0.878 (RM44) with mean of 0.439 for each locus. A number of polymorphic markers showed unique bands of various sizes ranges from 75 to 1000 bp, during genetic dissection of mutant population. Dendrogram divided whole mutant population into four major groups. Phylogenic analyses revealed that 40-96%genetic similarity is present among individuals of mutant population. CONCLUSION: It is concluded that EMS induced genetic variability and SSRs markers (RM44, RM154, RM1, RM252, RM334, RM487, RM110 and RM257) could be handy for the selection of rice mutants as parents for functional genomic and molecular breeding program.


Assuntos
Variação Genética , Repetições de Microssatélites , Humanos , Variação Genética/genética , Metanossulfonato de Etila/farmacologia , Genótipo , Filogenia , Repetições de Microssatélites/genética , Metano , Alelos
4.
Front Plant Sci ; 14: 1233295, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636103

RESUMO

Begomoviruses are contagious and severely affect commercially important fiber and food crops. Cotton leaf curl Multan virus (CLCuMuV) is one of the most dominant specie of Begomovirus and a major constraint on cotton yield in Pakistan. Currently, the field of plant genome editing is being revolutionized by the CRISPR/Cas system applications such as base editing, prime editing and CRISPR based gene drives. CRISPR/Cas9 system has successfully been used against biotic and abiotic plant stresses with proof-of-concept studies in both model and crop plants. CRISPR/Cas12 and CRISPR/Cas13 have recently been applied in plant sciences for basic and applied research. In this study, we used a novel approach, multiplexed crRNA-based Cas12a toolbox to target the different ORFs of the CLCuMuV genome at multiple sites simultaneously. This method successfully eliminated the symptoms of CLCuMuV in Nicotiana benthamiana and Nicotiana tabacum. Three individual crRNAs were designed from the CLCuMuV genome, targeting the specific sites of four different ORFs (C1, V1 and overlapping region of C2 and C3). The Cas12a-based construct Cas12a-MV was designed through Golden Gate three-way cloning for precise editing of CLCuMuV genome. Cas12a-MV construct was confirmed through whole genome sequencing using the primers Ubi-intron-F1 and M13-R1. Transient assays were performed in 4 weeks old Nicotiana benthamiana plants, through the agroinfiltration method. Sanger sequencing indicated that the Cas12a-MV constructs made a considerable mutations at the target sites of the viral genome. In addition, TIDE analysis of Sanger sequencing results showed the editing efficiency of crRNA1 (21.7%), crRNA2 (24.9%) and crRNA3 (55.6%). Furthermore, the Cas12a-MV construct was stably transformed into Nicotiana tabacum through the leaf disc method to evaluate the potential of transgenic plants against CLCuMuV. For transgene analysis, the DNA of transgenic plants of Nicotiana tabacum was subjected to PCR to amplify Cas12a genes with specific primers. Infectious clones were agro-inoculated in transgenic and non-transgenic plants (control) for the infectivity assay. The transgenic plants containing Cas12a-MV showed rare symptoms and remained healthy compared to control plants with severe symptoms. The transgenic plants containing Cas12a-MV showed a significant reduction in virus accumulation (0.05) as compared to control plants (1.0). The results demonstrated the potential use of the multiplex LbCas12a system to develop virus resistance in model and crop plants against begomoviruses.

5.
Front Genet ; 13: 772517, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464861

RESUMO

Spring wheat (Triticum aestivum L.) is one of the most imperative staple food crops, with an annual production of 765 million tons globally to feed ∼40% world population. Genetic diversity in available germplasm is crucial for sustainable wheat improvement to ensure global food security. A diversity panel of 184 Pakistani wheat accessions was genotyped using 123,596 high-quality single nucleotide polymorphism (SNP) markers generated by genotyping-by-sequencing with 42% of the SNPs mapped on B, 36% on A, and 22% on D sub-genomes of wheat. Chromosome 2B contains the most SNPs (9,126), whereas 4D has the least (2,660) markers. The mean polymorphic information content, genetic diversity, and major allele frequency of the population were 0.157, 0.1844, and 0.87, respectively. Analysis of molecular variance revealed a higher genetic diversity (80%) within the sub-population than among the sub-populations (20%). The genome-wide linkage disequilibrium was 0.34 Mbp for the whole wheat genome. Among the three subgenomes, A has the highest LD decay value (0.29 Mbp), followed by B (0.2 Mbp) and D (0.07 Mbp) genomes, respectively. The results of population structure, principal coordinate analysis, phylogenetic tree, and kinship analysis also divided the whole population into three clusters comprising 31, 33, and 120 accessions in group 1, group 2, and group 3, respectively. All groups were dominated by the local wheat accessions. Estimation of genetic diversity will be a baseline for the selection of breeding parents for mutations and the genome-wide association and marker-assisted selection studies.

6.
PLoS One ; 16(9): e0257392, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34506613

RESUMO

Wheat is a major staple food and has been extensively grown around the globe. Sessile nature of plants has exposed them to a lot of biotic and abiotic stresses including fungal pathogen attack. Puccinia graminis f.sp. tritici causes stem rust in the wheat crop and leads to 70% decrease in its production. Pathogenesis-related (PR) proteins provide plants with defense against different fungal pathogens as these proteins have antifungal activities. This study was designed to screen Pakistani wheat varieties for PR2 and PR3 proteins and their in silico characterization. PR2 and PR3 genes were screened and isolated by PCR amplification from wheat variety Chenab-70 and Frontana, respectively. The nucleotide sequences of PR2 and PR3 genes were deposited in GenBank with accession numbers MT303867 and MZ766118, respectively. Physicochemical properties, secondary and tertiary structure predictions, and molecular docking of protein sequences of PR2 and PR3 were performed using different bioinformatics tools and software. PR2 and PR3 genes were identified to encode ß-1,3-glucanase and chitinase proteins, respectively. Molecular docking of both PR2 and PR3 proteins with beta-glucan and chitin (i.e. their respective ligands) showed crucial amino acid residues involved in molecular interactions. Conclusively, molecular docking analysis of ß-1,3-glucanase and chitinase proteins revealed crucial amino acid residues which are involved in ligand binding and important interactions which might have important role in plant defense against fungal pathogens. Moreover, the active residues in the active sties of these proteins can be identified through mutational studies and resulting information might help understanding how these proteins are involved in plant defense mechanisms.


Assuntos
Pão , Triticum/genética , Triticum/microbiologia , Domínio Catalítico , Simulação por Computador , Análise Mutacional de DNA , Ligantes , Simulação de Acoplamento Molecular , Filogenia , Doenças das Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase , Conformação Proteica , Estrutura Secundária de Proteína , Sementes/metabolismo , Triticum/metabolismo
7.
Plants (Basel) ; 9(9)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32824927

RESUMO

Stripe rust caused by the pathogen Puccinia striiformis f. sp. tritici (Pst) is a major threat for wheat, resulting in low yield and grain quality loss in many countries. Genetic resistance is a prevalent method to combat the disease. Mapping the resistant loci and their association with traits is highly exploited in this era. A panel of 465 Pakistani spring wheat genotypes were evaluated for their phenotypic response to stripe rust at the seedling and adult plant stages. A total of 765 single nucleotide polymorphism (SNP) markers were applied on 465 wheat genotypes to evaluate their stripe rust response against nine races during the seedling test and in three locations for the field test. Currently, twenty SNPs dispersed on twelve chromosomal regions (1A, 1B, 1D, 2A, 2B, 4A, 4B, 5B, 6A, 6B, 6D and 7B) have been identified that were associated with rust race-specific resistance at the seedling stage. Thirty SNPs dispersed on eighteen chromosomal regions (1A, 1B, 1D, 2A, 2B, 2D, 3A, 3B, 3D, 4B, 5A, 5B, 6A, 6B, 6D, 7A, 7B and 7D) are associated with adult plant resistance. SNP loci IWB3662 was linked with all three Pakistani races, and likewise IWA2344 and IWA4096 were found to be linked with three different USA races. The present research findings can be applied by wheat breeders to increase their resistant capability and yield potential of their cultivars, through marker-assisted selection.

8.
3 Biotech ; 10(5): 197, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32300513

RESUMO

In this study, the Sr22 gene was isolated and prepared for transformation in disease-susceptible commercial high-yielding wheat (Triticum aestivum L.) cultivar Lasani-2008. The Sr22 fragment was initially inserted in plasmid pUC57 for sequence confirmation before performing further experiments. After confirmation, Sr22 was subcloned in pGreen0029 which helped in further cloning and ligation. pUC57-Sr22 was restricted with Nru1 and BamH1, while pGreen0029 was restricted with EcoRV and BamH1 and ligated. From pGreen0029, Sr22 was eluted and ligated in pJIT163 to insert the 2 × 35S promoter and CaMV terminator using Xho1 and BamH1 and Sal1. At this stage, the expression cassette was completed. The 2 × 35Sp-Sr22-CaMVt was then ligated in pGreen0029 and transferred to Agrobacterium along with pSOUP. pSOUP helped pGreen0029 to insert 2X35Sp-Sr22-CaMVt in the callus of Lasani-2008, along with kanamycin-resistant gene. Transgenic callus was used for regeneration of the whole plant by tissue culture. Transgenic plants were further tested by PCR, qPCR and SDS-PAGE. The transgenic Lasani-2008 showed substantial resistance against stem rust in both seedling and adult plant stages. The results also showed that transgenic Lasani-2008 has increased average yield of grains (i.e., 4893 ± 148 kg/ha) as compared to non-transgenic Lasani-2008 (i.e., with average yield of gains 4762 ± 103 kg/ha). Sr22 containing lines and the transgenic developed in this study can be used in breeding systems. Transgenic seeds developed will be shared with breeding institutes and breeders should use this information to develop new varieties.

9.
Metabolites ; 9(12)2019 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-31847393

RESUMO

Metabolomics is an emerging branch of "omics" and it involves identification and quantification of metabolites and chemical footprints of cellular regulatory processes in different biological species. The metabolome is the total metabolite pool in an organism, which can be measured to characterize genetic or environmental variations. Metabolomics plays a significant role in exploring environment-gene interactions, mutant characterization, phenotyping, identification of biomarkers, and drug discovery. Metabolomics is a promising approach to decipher various metabolic networks that are linked with biotic and abiotic stress tolerance in plants. In this context, metabolomics-assisted breeding enables efficient screening for yield and stress tolerance of crops at the metabolic level. Advanced metabolomics analytical tools, like non-destructive nuclear magnetic resonance spectroscopy (NMR), liquid chromatography mass-spectroscopy (LC-MS), gas chromatography-mass spectrometry (GC-MS), high performance liquid chromatography (HPLC), and direct flow injection (DFI) mass spectrometry, have sped up metabolic profiling. Presently, integrating metabolomics with post-genomics tools has enabled efficient dissection of genetic and phenotypic association in crop plants. This review provides insight into the state-of-the-art plant metabolomics tools for crop improvement. Here, we describe the workflow of plant metabolomics research focusing on the elucidation of biotic and abiotic stress tolerance mechanisms in plants. Furthermore, the potential of metabolomics-assisted breeding for crop improvement and its future applications in speed breeding are also discussed. Mention has also been made of possible bottlenecks and future prospects of plant metabolomics.

10.
Methods Mol Biol ; 1638: 209-225, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28755226

RESUMO

Breeding of date palm is complicated because of its long life cycle and heterozygous nature. Sexual propagation of date palm does not produce true-to-type plants. Sex of date palms cannot be identified until the first flowering stage. Molecular markers such as random amplified polymorphic DNA (RAPD), sequence-characterized amplified regions (SCAR), and simple sequence repeats (SSR) have successfully been used to identify the sex-linked loci in the plant genome and to isolate the corresponding genes. This chapter highlights the use of three molecular markers including RAPD, SCAR, and SSR to identify the gender of date palm seedlings.


Assuntos
Marcadores Genéticos/genética , Phoeniceae/genética , Processos de Determinação Sexual/genética , Cruzamento/métodos , DNA de Plantas/genética , Flores/genética , Genoma de Planta/genética , Repetições de Microssatélites/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico/métodos
11.
Int J Med Robot ; 13(3)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27671920

RESUMO

Virtual reality (VR) training simulators have started playing a vital role in enhancing surgical skills, such as hand-eye coordination in laparoscopy, and practicing surgical scenarios that cannot be easily created using physical models. We describe a new VR simulator for basic training in laparoscopy, i.e. SmartSIM, which has been developed using a generic open-source physics engine called the simulation open framework architecture (SOFA). This paper describes the systems perspective of SmartSIM including design details of both hardware and software components, while highlighting the critical design decisions. Some of the distinguishing features of SmartSIM include: (i) an easy-to-fabricate custom-built hardware interface; (ii) use of a generic physics engine to facilitate wider accessibility of our work and flexibility in terms of using various graphical modelling algorithms and their implementations; and (iii) an intelligent and smart evaluation mechanism that facilitates unsupervised and independent learning.


Assuntos
Instrução por Computador/métodos , Laparoscopia/educação , Realidade Virtual , Algoritmos , Fenômenos Biomecânicos , Simulação por Computador , Sistemas Computacionais , Instrução por Computador/instrumentação , Instrução por Computador/estatística & dados numéricos , Desenho de Equipamento , Feminino , Humanos , Masculino , Física , Procedimentos Cirúrgicos Robóticos/educação , Procedimentos Cirúrgicos Robóticos/instrumentação , Procedimentos Cirúrgicos Robóticos/estatística & dados numéricos , Software , Interface Usuário-Computador
12.
Cell Mol Biol Lett ; 8(4): 979-89, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14668921

RESUMO

An efficient and reproducible protocol has been developed for the cryopreservation of cell suspension cultures of the potato (Solanum tuberosum L.) cv. Desiree. An evaluation was made of the effectiveness of different pre-culture and post-thaw treatments on cell growth, as measured by changes in biomass. Cell suspensions were cultured in UM medium supplemented with 0.25, 0.5, 0.625, 0.75 or 1.0 M sucrose prior to cryopreservation. Sucrose-treated cells were harvested from suspension and 0.75 ml packed cell volumes placed in 2 ml capacity polypropylene vials with 0.5 ml of chilled cryoprotectant (glycerol 46.0 g 1(-1), dimethylsulphoxide 39.0 g 1(-1), sucrose 342.0 g 1(-1) proline 5.0 g 1(-1); pH 5.8). Cells were frozen at -0.5 degrees C min(-1) from 0 to -35 degrees C, held at -35 degrees C for 35 min and stored, for 10 days, in liquid nitrogen (-196 degrees C). The most effective pre-treatment, in terms of subsequent post-thaw cell viability as assessed by fluorescein diacetate uptake or triphenyltetrazolium chloride reduction, was culture with 0.75 M sucrose. For this treatment, the mean absorbance (490 nm) following triphenyltetrazolium chloride reduction was 88% greater (p < 0.05) than control and 59% greater (p < 0.05) for thawed cells also cultured on supporting filter paper discs.


Assuntos
Criopreservação , Crioprotetores/química , Dimetil Sulfóxido/química , Glicerol/química , Solanum tuberosum/citologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Fluoresceínas/química , Solanum tuberosum/metabolismo , Sacarose/química , Sais de Tetrazólio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...